JTUS, Vol. 02, No. 4 April 2024
E-ISSN: 2984-7435, P-ISSN: 2984-7427
|
Analysis of Drought Index with Theory of Run
Statistical Method in Dompu Regency
Syakirin, Sayfuddin
Al-Azhar Islamic University, Mataram, West
Nusa Tenggara, Indonesia
Email: [email protected], [email protected]
Abstract Indonesia
has in recent years experienced severe drought in some areas. Climate change
causes temperatures in Indonesia to become hotter and makes rainfall patterns
erratic or El-Nino. Indonesia is an agricultural country that makes the
agricultural sector as one of the livelihoods for many people, but droughts
that occur in several regions in Indonesia result in losses for farmers
because the agricultural crops planted have failed harvests, resulting in
reduced community income. Dompu Regency is one of
the areas experiencing drought. Analysis of the drought index in Manggalewa District using the Theory of Run method with
the aim of determining the prediction of the duration of rain for a period of
10 years. The results showed that in the period 2003-2022, the longest
drought duration was 11 events that occurred from March 2014 to January 2015
with a deficit value of 430.05 mm from the average normal rain, while the
duration of wet months was 12 events that occurred from March 2021 to
February 2022. Meanwhile, in the 2023-2032 period, the longest drought
duration is 8 months which occurs in February-September 2027, while the worst
deficit value occurs in December 2030 to January 2031 of 235.93 mm from the
average normal rain, while the duration of wet months is 6 events that occur
in August 2025 to January 2026. Keywords: Hydrology, Drought Index, Theory
of Run Method. |
INTRODUCTION
In recent years, Indonesia has experienced severe drought in some
areas. Climate change is causing temperatures in Indonesia to become hotter and
making rainfall patterns erratic
Manggalewa District is
one of the sub-districts in Dompu Regency with an
area of 176.49 km2. The agricultural sector is the main source of income for
most residents in Manggalewa sub-district. The area
of rice fields in 2019 reached 3,030 Ha and dry land covered an area of 9,167
Ha (BPS Dompu Regency, 2022). This study used a
statistical method, namely the Theory of Run method
The authors hope that drought analysis research using this method
will obtain a measure of the determinant of dry months based on rain data in
previous years. Rain data available in the previous year is then generated
using the Thomas Fiering method to predict dry months,
which can later be used to plan mitigation measures, anticipate prevention, or
reduce the impact of drought. To find out the predicted value of rainfall and
the worst deficit value based on the Theory of Run method.
METHODS
At the data collection stage, there are primary data as well as
secondary data. Primary data is obtained from data from field surveys, which in
this study is not used, while secondary data is data obtained from related
agencies in the form of location coordinates along with rainfall data for each
sectoral rainfall station in Dompu Regency for
statistical parameter calculation activities from 2003 to 2022, which are then
determined by influential sectoral rain stations using the Thiessen Polygon
method.
The stages of data processing and drawing conclusions in drought
analysis in the Manggalewa District area using
statistical methods, namely the Theory of Run method. Collect monthly rainfall
data from 2003 to 2022. Selecting influential rain stations using the Thiessen
Polygon method, Monthly rainfall data consistency test, this rain data
consistency test was carried out using the Rescaled Adjusted Partial Sums
(RAPS) method for the period 2003 to 2022, Calculation of rain discharge data
generation using the Thomas Fiering Model for a
period of 10 years (2023 to 2032).
RESULTS AND DISCUSSION
Selection of Influential
Rainfall Stations
To determine the rainfall station that affects the research
location, the Thiessen Polygon method can be used to find that the station that
affects Manggalewa District, Dompu
Regency is the Dompu rainfall station.
Figure 1. Thiessen's
Polygon to Research Site
Rainfall Data
The data used in this study is semi-monthly rainfall data at each
rainfall station that affects the study location. The rainfall station data
used is the Dompu rainfall station.
Figure 2. Half Month
Rainfall Data Dompu Rainfall Station (mm)
Source: Agency,
Meteorology, Climatology, and Geophysics (BMKG) Bima
Regency 2022
Rainfall Data Consistency
Test
The consistency test of rainfall data was carried out using the
Rescaled Adjusted Partial Sums (RAPS) method.
Table 1. Dompu Rain Station Monthly Rainfall Data (mm)
Yrs |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Des |
|
2003 |
247 |
215 |
267 |
73 |
24 |
0 |
0 |
0 |
2 |
20 |
203 |
204 |
1253.11 |
2004 |
222 |
142 |
196 |
167 |
36 |
0 |
0 |
0 |
0 |
94 |
110 |
85 |
1051.58 |
2005 |
167 |
193 |
241 |
105 |
0 |
17 |
1 |
0 |
0 |
0 |
30 |
38 |
791.90 |
2006 |
124 |
199 |
163 |
169 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
178 |
832.98 |
2007 |
342 |
151 |
97 |
27 |
10 |
15 |
0 |
0 |
0 |
8 |
149 |
250 |
1049.03 |
2008 |
135 |
84 |
95 |
17 |
59 |
0 |
0 |
0 |
0 |
0 |
157 |
280 |
826.52 |
2009 |
159 |
276 |
291 |
113 |
0 |
34 |
13 |
0 |
0 |
44 |
156 |
333 |
1417.60 |
2010 |
187 |
250 |
247 |
213 |
40 |
5 |
0 |
0 |
0 |
0 |
16 |
156 |
1114.22 |
2011 |
186 |
156 |
127 |
140 |
69 |
7 |
0 |
0 |
0 |
0 |
17 |
445 |
1147.10 |
2012 |
281 |
230 |
212 |
92 |
19 |
3 |
0 |
0 |
0 |
70 |
130 |
345 |
1382.30 |
2013 |
192 |
125 |
79 |
72 |
15 |
0 |
0 |
0 |
0 |
68 |
133 |
137 |
821.60 |
2014 |
273 |
211 |
141 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
141 |
766.30 |
2015 |
210 |
215 |
183 |
68 |
53 |
0 |
0 |
0 |
0 |
0 |
0 |
104 |
833.36 |
2016 |
105 |
208 |
57 |
0 |
0 |
1 |
0 |
0 |
0 |
41 |
132 |
615 |
1156.55 |
2017 |
286 |
297 |
199 |
129 |
60 |
34 |
0 |
0 |
0 |
72 |
239 |
260 |
1575.95 |
2018 |
289 |
169 |
183 |
255 |
32 |
13 |
2 |
0 |
0 |
0 |
230 |
202 |
1374.75 |
2019 |
174 |
216 |
151 |
129 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
229 |
898.66 |
2020 |
275 |
243 |
164 |
186 |
66 |
14 |
0 |
0 |
0 |
50 |
158 |
116 |
1271.21 |
2021 |
234 |
168 |
195 |
148 |
63 |
86 |
11 |
3 |
37 |
209 |
293 |
292 |
1738.90 |
2022 |
239 |
206 |
79 |
113 |
0 |
0 |
0 |
0 |
71 |
1 |
132 |
244 |
1083.50 |
Average |
1119.36 |
Source:
2023 Calculation Results
Table 2. Dompu Rain Station Consistency Test
Year |
|
|
|
|
|
2003 |
1253.11 |
133.76 |
894.52 |
0.89 |
0.89 |
2004 |
1051.58 |
65.97 |
217.63 |
-0.45 |
0.45 |
2005 |
791.90 |
-261.48 |
3418.58 |
-2.18 |
2.18 |
2006 |
832.98 |
-547.86 |
15007.41 |
-1.91 |
1.91 |
2007 |
1049.03 |
-618.19 |
19107.69 |
-0.47 |
0.47 |
2008 |
826.52 |
-911.02 |
41497.97 |
-1.95 |
1.95 |
2009 |
1417.60 |
-612.78 |
18774.95 |
1.99 |
1.99 |
2010 |
1114.22 |
-617.91 |
19090.87 |
-0.03 |
0.03 |
2011 |
1147.10 |
-590.17 |
17414.81 |
0.18 |
0.18 |
2012 |
1382.30 |
-327.23 |
5353.82 |
1.75 |
1.75 |
2013 |
821.60 |
-624.98 |
19529.97 |
-1.98 |
1.98 |
2014 |
766.30 |
-978.03 |
47827.59 |
-2.35 |
2.35 |
2015 |
833.36 |
-1264.03 |
79888.21 |
-1.91 |
1.91 |
2016 |
1156.55 |
-1226.83 |
75255.89 |
0.25 |
0.25 |
2017 |
1575.95 |
-770.24 |
29663.64 |
3.04 |
3.04 |
2018 |
1374.75 |
-514.85 |
13253.43 |
1.70 |
1.70 |
2019 |
898.66 |
-735.55 |
27051.40 |
-1.47 |
1.47 |
2020 |
1271.21 |
-583.69 |
17034.63 |
1.01 |
1.01 |
2021 |
1738.90 |
35.86 |
64.28 |
4.13 |
4.13 |
2022 |
1083.50 |
0.00 |
0.00 |
-0.24 |
0.24 |
Sum |
|
|
450347.29 |
|
|
Average |
1119.36 |
|
22517.36 |
|
|
|
= |
20 |
|||
|
= |
150.06 |
|||
|
= |
-2.35 |
|||
|
= |
4.13 |
|||
|
= |
4.13 |
|||
|
= |
6.48 |
|||
|
= |
0.92 < 1.42 (Consistent) |
|||
|
= |
1.45 < 1.60 (Consistent) |
Source: 2023 Calculation
Results
Data Generation Model Using
Thomas Fiering Model
Calculate
semi-monthly average rainfall
The equation used is
equation (2.7). Example of calculation at the Dompu
rainfall station:
Average for January I:
|
|
|
|
Table 3. Average Score
of Dompu Rainfall Station (mm)
Moon |
|
Moon |
|
|||
JAN |
I |
116.40 |
JUL |
I |
1.38 |
|
II |
99.98 |
II |
0.00 |
|||
FEB |
I |
110.30 |
AUG |
I |
0.14 |
|
II |
87.39 |
II |
0.00 |
|||
MAR |
I |
100.38 |
SEP |
I |
0.63 |
|
II |
67.89 |
II |
4.84 |
|||
APR |
I |
71.69 |
OCT |
I |
19.17 |
|
II |
38.97 |
II |
14.62 |
|||
MAY |
I |
13.97 |
NOV |
I |
60.71 |
|
II |
13.41 |
II |
53.47 |
|||
JUN |
I |
5.91 |
DES |
I |
122.66 |
|
II |
5.49 |
II |
109.96 |
|||
Source: 2023 Calculation Results
Calculate
standard deviation/standard deviation
Standard
deviation in January I of 2003:
|
|
Table 4. Parameter Analysis of Standard Deviation Value in January I
Year |
|
|
|
2003 |
79.00 |
-37.40 |
1399.08 |
2004 |
117.50 |
1.10 |
1.20 |
2005 |
74.50 |
-41.90 |
1755.97 |
2006 |
71.50 |
-44.90 |
2016.39 |
2007 |
191.96 |
75.55 |
5707.93 |
2008 |
78.00 |
-38.40 |
1474.89 |
2009 |
118.32 |
1.91 |
3.65 |
2010 |
138.25 |
21.85 |
477.24 |
2011 |
90.50 |
-25.90 |
671.03 |
2012 |
193.94 |
77.54 |
6011.79 |
2013 |
43.00 |
-73.40 |
5388.18 |
2014 |
177.29 |
60.89 |
3707.44 |
2015 |
166.52 |
50.12 |
2511.83 |
2016 |
57.55 |
-58.85 |
3463.82 |
2017 |
197.51 |
81.11 |
6578.08 |
2018 |
114.70 |
-1.70 |
2.90 |
2019 |
73.20 |
-43.20 |
1866.61 |
2020 |
127.45 |
11.05 |
122.01 |
2021 |
92.35 |
-24.05 |
578.61 |
2022 |
125.05 |
8.65 |
74.75 |
Sum |
2328.09 |
|
43813.39 |
Average |
|
|
|
Source: 2023 Calculation Results
Calculating
the correlation coefficient
Table 5. The value of
the correlation coefficient of the Dompu Rainfall Station
Moon |
|
Moon |
|
||
JAN |
I |
0.39 |
JUL |
I |
0.79 |
II |
-0.05 |
II |
0.00 |
||
FEB |
I |
-0.23 |
AUG |
I |
0.00 |
II |
-0.15 |
II |
0.00 |
||
MAR |
I |
0.28 |
SEP |
I |
0.00 |
II |
0.00 |
II |
0.84 |
||
APR |
I |
0.54 |
OCT |
I |
0.36 |
II |
0.65 |
II |
0.80 |
||
MAY |
I |
-0.07 |
NOV |
I |
0.58 |
II |
0.35 |
II |
0.56 |
||
JUN |
I |
0.45 |
DES |
I |
0.24 |
II |
0.69 |
II |
0.50 |
Generate rain data
Table 6. Rainfall Data Generation
Results of Dompu Rainfall Station (mm)
Month |
2023 |
2024 |
2025 |
2026 |
2027 |
2028 |
2029 |
2030 |
2031 |
2032 |
|
January |
I |
50.97 |
91.99 |
117.31 |
124.79 |
104.35 |
62.11 |
120.76 |
92.46 |
66.80 |
49.77 |
II |
150.24 |
109.15 |
133.57 |
86.26 |
165.54 |
150.64 |
33.93 |
136.45 |
81.42 |
175.09 |
|
February |
I |
67.23 |
180.31 |
39.93 |
46.64 |
47.57 |
60.27 |
106.36 |
159.05 |
67.29 |
98.00 |
II |
38.82 |
63.81 |
31.37 |
100.63 |
52.59 |
91.99 |
75.29 |
80.01 |
146.75 |
27.60 |
|
March |
I |
130.76 |
188.44 |
138.34 |
160.75 |
61.97 |
9.80 |
146.38 |
118.64 |
76.94 |
185.00 |
II |
123.44 |
50.43 |
124.25 |
59.11 |
16.97 |
74.50 |
111.47 |
142.33 |
1.33 |
46.83 |
|
April |
I |
98.08 |
64.15 |
21.13 |
57.04 |
11.05 |
70.37 |
65.31 |
22.65 |
37.20 |
16.03 |
II |
78.56 |
20.75 |
38.23 |
19.97 |
47.19 |
37.57 |
34.53 |
62.48 |
5.60 |
62.15 |
|
May |
I |
1.86 |
27.29 |
40.84 |
34.14 |
17.81 |
9.46 |
11.70 |
0.27 |
40.28 |
29.81 |
II |
0.21 |
41.20 |
8.92 |
23.33 |
3.39 |
3.75 |
5.21 |
12.94 |
5.51 |
38.26 |
|
June |
I |
8.25 |
3.14 |
10.02 |
2.18 |
4.19 |
9.23 |
8.22 |
9.87 |
17.53 |
5.40 |
II |
15.87 |
3.32 |
9.14 |
0.28 |
9.32 |
8.23 |
6.40 |
16.56 |
14.01 |
2.10 |
|
July |
I |
3.14 |
2.28 |
0.06 |
1.22 |
0.89 |
0.24 |
1.64 |
2.81 |
3.86 |
0.67 |
II |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
|
August |
I |
0.85 |
0.65 |
0.70 |
0.16 |
0.36 |
1.36 |
0.53 |
0.77 |
0.57 |
0.29 |
II |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
|
September |
I |
3.48 |
0.84 |
3.82 |
1.17 |
1.17 |
2.34 |
1.72 |
2.05 |
0.08 |
1.22 |
II |
3.57 |
2.16 |
12.52 |
9.25 |
2.10 |
7.66 |
10.44 |
10.83 |
2.14 |
12.93 |
|
October |
I |
64.79 |
15.21 |
35.26 |
15.34 |
21.96 |
53.02 |
29.84 |
10.56 |
3.89 |
8.61 |
II |
16.69 |
6.19 |
20.92 |
1.97 |
25.43 |
10.24 |
28.39 |
0.46 |
17.23 |
14.82 |
|
November |
I |
106.54 |
35.46 |
103.22 |
95.02 |
20.87 |
86.29 |
3.28 |
47.77 |
107.38 |
42.50 |
II |
1.51 |
41.17 |
114.27 |
58.12 |
73.22 |
23.82 |
79.06 |
96.73 |
92.91 |
50.02 |
|
December |
I |
208.28 |
130.56 |
189.63 |
156.94 |
147.21 |
108.66 |
70.65 |
43.12 |
77.51 |
25.65 |
II |
223.00 |
14.60 |
125.52 |
236.53 |
145.40 |
162.29 |
192.04 |
44.50 |
120.27 |
191.64 |
Source: 2023 Calculation Results
Drought
Analysis with the Theory of Run Method
Average
monthly rain
Table 7. Monthly Rain Data of Dompu Rainfall Station for the Period 2003-2022 (mm)
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Des |
2003 |
247.00 |
215.00 |
267.00 |
73.00 |
24.00 |
0.00 |
0.00 |
0.00 |
2.00 |
20.00 |
203.00 |
204.00 |
2004 |
222.00 |
142.00 |
196.00 |
167.00 |
36.00 |
0.00 |
0.00 |
0.00 |
0.00 |
94.00 |
110.00 |
85.00 |
2005 |
167.00 |
193.00 |
241.00 |
105.00 |
0.00 |
17.00 |
1.00 |
0.00 |
0.00 |
0.00 |
30.00 |
38.00 |
2006 |
124.00 |
199.00 |
163.00 |
169.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
178.00 |
2007 |
342.00 |
151.00 |
97.00 |
27.00 |
10.00 |
15.00 |
0.00 |
0.00 |
0.00 |
8.00 |
149.00 |
250.00 |
2008 |
135.00 |
84.00 |
95.00 |
17.00 |
59.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
157.00 |
280.00 |
2009 |
159.00 |
276.00 |
291.00 |
113.00 |
0.00 |
34.00 |
13.00 |
0.00 |
0.00 |
44.00 |
156.00 |
333.00 |
2010 |
187.00 |
250.00 |
247.00 |
213.00 |
40.00 |
5.00 |
0.00 |
0.00 |
0.00 |
0.00 |
16.00 |
156.00 |
2011 |
186.00 |
156.00 |
127.00 |
140.00 |
69.00 |
7.00 |
0.00 |
0.00 |
0.00 |
0.00 |
17.00 |
445.00 |
2012 |
281.00 |
230.00 |
212.00 |
92.00 |
19.00 |
3.00 |
0.00 |
0.00 |
0.00 |
70.00 |
130.00 |
345.00 |
2013 |
192.00 |
125.00 |
79.00 |
72.00 |
15.00 |
0.00 |
0.00 |
0.00 |
0.00 |
68.00 |
133.00 |
137.00 |
2014 |
273.00 |
211.00 |
141.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
141.00 |
2015 |
210.00 |
215.00 |
183.00 |
68.00 |
53.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
104.00 |
2016 |
105.00 |
208.00 |
57.00 |
0.00 |
0.00 |
1.00 |
0.00 |
0.00 |
0.00 |
41.00 |
132.00 |
615.00 |
2017 |
286.00 |
297.00 |
199.00 |
129.00 |
60.00 |
34.00 |
0.00 |
0.00 |
0.00 |
72.00 |
239.00 |
260.00 |
2018 |
289.00 |
169.00 |
183.00 |
255.00 |
32.00 |
13.00 |
2.00 |
0.00 |
0.00 |
0.00 |
230.00 |
202.00 |
2019 |
174.00 |
216.00 |
151.00 |
129.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
229.00 |
2020 |
275.00 |
243.00 |
164.00 |
186.00 |
66.00 |
14.00 |
0.00 |
0.00 |
0.00 |
50.00 |
158.00 |
116.00 |
2021 |
234.00 |
168.00 |
195.00 |
148.00 |
63.00 |
86.00 |
11.00 |
3.00 |
37.00 |
209.00 |
293.00 |
292.00 |
2022 |
239.00 |
206.00 |
79.00 |
113.00 |
0.00 |
0.00 |
0.00 |
0.00 |
71.00 |
1.00 |
132.00 |
244.00 |
SUM |
4327 |
3954 |
3367 |
2216 |
546 |
229 |
27 |
3 |
110 |
677 |
2285 |
4654 |
AVERAGE |
216.35 |
197.70 |
168.35 |
110.80 |
27.30 |
11.45 |
1.35 |
0.15 |
5.50 |
33.85 |
114.25 |
232.70 |
ST. DEV |
63.25 |
51.34 |
65.95 |
69.54 |
26.41 |
20.58 |
3.69 |
0.67 |
17.49 |
51.75 |
90.36 |
133.56 |
SKEWNESS |
0.06 |
-0.22 |
0.03 |
0.11 |
0.36 |
2.83 |
2.84 |
4.47 |
3.38 |
2.25 |
0.14 |
1.27 |
KURTOSIS |
-0.68 |
0.22 |
-0.74 |
-0.35 |
-1.53 |
9.17 |
7.05 |
20.00 |
11.46 |
6.26 |
-0.91 |
2.42 |
Table 8. Monthly Rain Data of Dompu Rainfall Station for the Year 2023-2032 (mm)
YEAR |
JAN |
FEB |
MAR |
APR |
MAY |
JUN |
JUL |
AUG |
SEP |
OCT |
NOV |
DES |
2023 |
201.21 |
106.05 |
254.21 |
176.65 |
2.07 |
24.13 |
3.14 |
0.85 |
7.05 |
81.49 |
108.05 |
431.29 |
2024 |
201.15 |
244.12 |
238.87 |
84.90 |
68.50 |
6.46 |
2.28 |
0.65 |
3.00 |
21.40 |
76.64 |
145.16 |
2025 |
250.87 |
71.30 |
262.59 |
59.36 |
49.76 |
19.16 |
0.06 |
0.70 |
16.34 |
56.18 |
217.50 |
315.15 |
2026 |
211.04 |
147.27 |
219.86 |
77.01 |
57.46 |
2.45 |
1.22 |
0.16 |
10.42 |
17.31 |
153.14 |
393.48 |
2027 |
269.90 |
100.16 |
78.94 |
58.24 |
21.21 |
13.51 |
0.89 |
0.36 |
3.27 |
47.39 |
94.08 |
292.61 |
2028 |
212.75 |
152.26 |
84.30 |
107.94 |
13.20 |
17.46 |
0.24 |
1.36 |
10.00 |
63.26 |
110.12 |
270.94 |
2029 |
154.69 |
181.65 |
257.85 |
99.84 |
16.92 |
14.61 |
1.64 |
0.53 |
12.16 |
58.23 |
82.34 |
262.69 |
2030 |
228.91 |
239.06 |
260.97 |
85.13 |
13.21 |
26.43 |
2.81 |
0.77 |
12.88 |
11.02 |
144.50 |
87.61 |
2031 |
148.22 |
214.05 |
78.27 |
42.79 |
45.79 |
31.54 |
3.86 |
0.57 |
2.22 |
21.11 |
200.30 |
197.77 |
2032 |
224.87 |
125.59 |
231.84 |
78.18 |
68.06 |
7.50 |
0.67 |
0.29 |
14.16 |
23.43 |
92.52 |
217.28 |
SUM |
2103.6 |
1581.5 |
1967.7 |
870.0 |
356.2 |
163.3 |
16.8 |
6.2 |
91.5 |
400.8 |
1279.2 |
2613.9 |
AVERAGE |
210.36 |
158.15 |
196.77 |
87.00 |
35.62 |
16.33 |
1.68 |
0.62 |
9.15 |
40.08 |
127.92 |
261.40 |
ST. DEV |
37.82 |
60.04 |
81.37 |
37.08 |
24.95 |
9.32 |
1.29 |
0.34 |
5.02 |
24.14 |
49.43 |
105.40 |
SKEWNESS |
-0.33 |
0.21 |
-0.93 |
1.63 |
0.13 |
0.12 |
0.40 |
0.92 |
-0.22 |
0.39 |
0.91 |
0.03 |
KURTOSIS |
-0.08 |
-1.25 |
-1.28 |
3.74 |
-1.81 |
-0.86 |
-1.11 |
1.68 |
-1.41 |
-1.31 |
-0.44 |
-0.34 |
Surplus/deficit
value
1. January
2003:
(surplus)
2. April
2003:
(deficit)
Table 9. Monthly
Rainfall Surplus and Deficit Value of
Dompu Rainfall Station for the Period
2003-2022 (mm)
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Des |
2003 |
30.65 |
17.30 |
98.65 |
-37.80 |
-3.30 |
-11.45 |
-1.35 |
-0.15 |
-3.50 |
-13.85 |
88.75 |
-28.70 |
2004 |
5.65 |
-55.70 |
27.65 |
56.20 |
8.70 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
60.15 |
-4.25 |
-147.70 |
2005 |
-49.35 |
-4.70 |
72.65 |
-5.80 |
-27.30 |
5.55 |
-0.35 |
-0.15 |
-5.50 |
-33.85 |
-84.25 |
-194.70 |
2006 |
-92.35 |
1.30 |
-5.35 |
58.20 |
-27.30 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-114.25 |
-54.70 |
2007 |
125.65 |
-46.70 |
-71.35 |
-83.80 |
-17.30 |
3.55 |
-1.35 |
-0.15 |
-5.50 |
-25.85 |
34.75 |
17.30 |
2008 |
-81.35 |
-113.70 |
-73.35 |
-93.80 |
31.70 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
42.75 |
47.30 |
2009 |
-57.35 |
78.30 |
122.65 |
2.20 |
-27.30 |
22.55 |
11.65 |
-0.15 |
-5.50 |
10.15 |
41.75 |
100.30 |
2010 |
-29.35 |
52.30 |
78.65 |
102.20 |
12.70 |
-6.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-98.25 |
-76.70 |
2011 |
-30.35 |
-41.70 |
-41.35 |
29.20 |
41.70 |
-4.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-97.25 |
212.30 |
2012 |
64.65 |
32.30 |
43.65 |
-18.80 |
-8.30 |
-8.45 |
-1.35 |
-0.15 |
-5.50 |
36.15 |
15.75 |
112.30 |
2013 |
-24.35 |
-72.70 |
-89.35 |
-38.80 |
-12.30 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
34.15 |
18.75 |
-95.70 |
2014 |
56.65 |
13.30 |
-27.35 |
-110.80 |
-27.30 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-114.25 |
-91.70 |
2015 |
-6.35 |
17.30 |
14.65 |
-42.80 |
25.70 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-114.25 |
-128.70 |
2016 |
-111.35 |
10.30 |
-111.35 |
-110.80 |
-27.30 |
-10.45 |
-1.35 |
-0.15 |
-5.50 |
7.15 |
17.75 |
382.30 |
2017 |
69.65 |
99.30 |
30.65 |
18.20 |
32.70 |
22.55 |
-1.35 |
-0.15 |
-5.50 |
38.15 |
124.75 |
27.30 |
2018 |
72.65 |
-28.70 |
14.65 |
144.20 |
4.70 |
1.55 |
0.65 |
-0.15 |
-5.50 |
-33.85 |
115.75 |
-30.70 |
2019 |
-42.35 |
18.30 |
-17.35 |
18.20 |
-27.30 |
-11.45 |
-1.35 |
-0.15 |
-5.50 |
-33.85 |
-114.25 |
-3.70 |
2020 |
58.65 |
45.30 |
-4.35 |
75.20 |
38.70 |
2.55 |
-1.35 |
-0.15 |
-5.50 |
16.15 |
43.75 |
-116.70 |
2021 |
17.65 |
-29.70 |
26.65 |
37.20 |
35.70 |
74.55 |
9.65 |
2.85 |
31.50 |
175.15 |
178.75 |
59.30 |
2022 |
22.65 |
8.30 |
-89.35 |
2.20 |
-27.30 |
-11.45 |
-1.35 |
-0.15 |
65.50 |
-32.85 |
17.75 |
11.30 |
Source:
2023 Calculation Results
Figure
2. Graph of surplus and deficit of
Monthly Rain of Dompu Rainfall Station for the
Year 2003-2022 (mm)
Table 10. Surplus and
Monthly Rain Deficit Value of Dompu Rainfall Station
for the Year 2023-2032 (mm)
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Des |
2023 |
-9.15 |
-52.10 |
57.44 |
89.65 |
-33.55 |
7.81 |
1.46 |
0.23 |
-2.10 |
41.41 |
-19.87 |
169.89 |
2024 |
-9.21 |
85.97 |
42.10 |
-2.10 |
32.88 |
-9.87 |
0.60 |
0.03 |
-6.15 |
-18.68 |
-51.28 |
-116.24 |
2025 |
40.51 |
-86.85 |
65.82 |
-27.64 |
14.14 |
2.84 |
-1.62 |
0.08 |
7.19 |
16.10 |
89.58 |
53.75 |
2026 |
0.68 |
-10.88 |
23.09 |
-9.99 |
21.84 |
-13.88 |
-0.46 |
-0.46 |
1.27 |
-22.77 |
25.22 |
132.08 |
2027 |
59.54 |
-57.99 |
-117.83 |
-28.76 |
-14.41 |
-2.82 |
-0.79 |
-0.26 |
-5.88 |
7.31 |
-33.84 |
31.21 |
2028 |
2.39 |
-5.89 |
-112.47 |
20.94 |
-22.42 |
1.14 |
-1.44 |
0.74 |
0.85 |
23.18 |
-17.80 |
9.54 |
2029 |
-55.67 |
23.50 |
61.08 |
12.84 |
-18.70 |
-1.72 |
-0.04 |
-0.09 |
3.01 |
18.15 |
-45.58 |
1.29 |
2030 |
18.55 |
80.91 |
64.20 |
-1.87 |
-22.41 |
10.11 |
1.13 |
0.15 |
3.73 |
-29.06 |
16.58 |
-173.79 |
2031 |
-62.14 |
55.90 |
-118.50 |
-44.21 |
10.17 |
15.22 |
2.18 |
-0.05 |
-6.93 |
-18.97 |
72.38 |
-63.63 |
2032 |
14.51 |
-32.56 |
35.07 |
-8.82 |
32.44 |
-8.83 |
-1.01 |
-0.33 |
5.01 |
-16.65 |
-35.40 |
-44.12 |
Source:
2023 Calculation Results
Figure 3. Graph of surplus
and deficit of Monthly Rain of Dompu Rainfall Station
for the Year 2023-2032 (mm)
CONCLUSION
The research conducted in Manggalewa
District, Dompu Regency, utilizing the Theory of Run
method and focusing on the Dompu rainfall station
reveals several key findings. Firstly, from 2003 to 2022, the district
experienced 11 months of drought, spanning from March 2014 to January 2015,
resulting in a deficit of 430.05 mm compared to the average normal rainfall.
Secondly, during the same period, there were 12 consecutive months of wet
weather, lasting from March 2021 to February 2022. Thirdly, projecting forward
to the period of 2023 to 2032, the study anticipates 8 months of drought,
occurring from February to September 2027. Notably, the most significant
deficit is forecasted for December 2030 to January 2031, with a shortfall of
235.93 mm from the average normal rainfall. These findings underscore the
importance of understanding and preparing for fluctuations in rainfall patterns
in the region for effective water resource management and agricultural
planning.
Achyadi,
M. A., Ohgushi, K., & Morita, T. (2019). Impacts
of climate change on agriculture for local paddy water requirement irrigation
Barito Kuala, South Kalimantan, Indonesia. Journal of Wetlands
Environmental Management, 7(2), 140–150.
Callegary,
J. B., Megdal, S. B., Villaseñor,
E. M. T., Petersen-Perlman, J. D., Sosa, I. M., Monreal,
R., Gray, F., & Noriega, F. G. (2018). Findings and lessons learned from
the assessment of the Mexico-United States transboundary San Pedro and Santa
Cruz aquifers: The utility of social science in applied hydrologic research. Journal
of Hydrology: Regional Studies, 20, 60–73.
Duffy, C., Toth, G. G., Hagan, R. P.
O., McKeown, P. C., Rahman, S. A., Widyaningsih, Y.,
Sunderland, T. C. H., & Spillane, C. (2021). Agroforestry contributions to
smallholder farmer food security in Indonesia. Agroforestry Systems, 95(6),
1109–1124.
Jaro’ah,
S., Ardelia, V., & Jannah, M. (2023). Climate is More Than Just Weather:
Gap of Knowledge about Climate Change and Its Psychological Impacts among
Indonesian Youth. Indonesian Journal of Social and Environmental Issues
(IJSEI), 4(2), 160–170.
Ma, Q., Li, Y., Liu, F., Feng, H.,
Biswas, A., & Zhang, Q. (2023). SPEI and multi-threshold run theory based drought analysis using multi-source products
in China. Journal of Hydrology, 616, 128737.
Pratiwi,
A., & Suzuki, A. (2019). Reducing agricultural income vulnerabilities
through agroforestry training: evidence from a randomised
field experiment in Indonesia. Bulletin of Indonesian Economic Studies,
55(1), 83–116.
Suhardi,
S., Putra, W. P. B., Wibowo, A., Ismanto, A., Rofik, Haris, M. I., Safitri, A., Ibrahim, & Summpunn,
P. (2022). Canonical discriminant analysis of morphometric variables of
swamp buffalo (Bubalus bubalis) in Kalimantan island.
Surmaini,
E., Sarvina, Y., Susanti,
E., Widiarta, I. N., Misnawati,
M., Suciantini, S., Fanggidae,
Y. R., Rahmini, R., & Dewi,
E. R. (2024). Climate change and the future distribution of Brown Planthopper
in Indonesia: A projection study. Journal of the Saudi Society of
Agricultural Sciences, 23(2), 130–141.
Wang, L., Zhang, X., Wang, S., Salahou, M. K., & Fang, Y. (2020a). Analysis and
application of drought characteristics based on theory of runs and copulas in
Yunnan, Southwest China. International Journal of Environmental Research
and Public Health, 17(13), 4654.
Wang, L., Zhang, X., Wang, S., Salahou, M. K., & Fang, Y. (2020b). Analysis and
application of drought characteristics based on theory of runs and copulas in
Yunnan, Southwest China. International Journal of Environmental Research
and Public Health, 17(13), 4654.
Wu, R., Zhang, J., Bao, Y., & Guo,
E. (2019a). Run theory and Copula-based drought risk analysis for Songnen grassland in northeastern China. Sustainability,
11(21), 6032.
Wu, R., Zhang, J., Bao, Y., & Guo,
E. (2019b). Run theory and Copula-based drought risk analysis for Songnen grassland in northeastern China. Sustainability,
11(21), 6032.
Zhang, J., Zhang, M., Yu, Y., &
Yu, R. (2024). An innovative method integrating run theory and DBSCAN for
complete three-dimensional drought structures. Science of the Total
Environment, 926, 171901.
Copyright holder: Syakirin, Sayfuddin (2024) |
First publication right: Journal
Transnational Universal Studies (JTUS) |
This article is licensed
under: |