A close-up of a logo

Description automatically generatedJTUS, Vol. 02, No. 4 April 2024      

E-ISSN: 2984-7435, P-ISSN: 2984-7427

 

Analysis of Drought Index with Theory of Run Statistical Method in Dompu Regency

 

Syakirin, Sayfuddin

Al-Azhar Islamic University, Mataram, West Nusa Tenggara, Indonesia

Email: [email protected], [email protected]

Abstract

Indonesia has in recent years experienced severe drought in some areas. Climate change causes temperatures in Indonesia to become hotter and makes rainfall patterns erratic or El-Nino. Indonesia is an agricultural country that makes the agricultural sector as one of the livelihoods for many people, but droughts that occur in several regions in Indonesia result in losses for farmers because the agricultural crops planted have failed harvests, resulting in reduced community income. Dompu Regency is one of the areas experiencing drought. Analysis of the drought index in Manggalewa District using the Theory of Run method with the aim of determining the prediction of the duration of rain for a period of 10 years. The results showed that in the period 2003-2022, the longest drought duration was 11 events that occurred from March 2014 to January 2015 with a deficit value of 430.05 mm from the average normal rain, while the duration of wet months was 12 events that occurred from March 2021 to February 2022. Meanwhile, in the 2023-2032 period, the longest drought duration is 8 months which occurs in February-September 2027, while the worst deficit value occurs in December 2030 to January 2031 of 235.93 mm from the average normal rain, while the duration of wet months is 6 events that occur in August 2025 to January 2026.

 

Keywords: Hydrology, Drought Index, Theory of Run Method.

INTRODUCTION

In recent years, Indonesia has experienced severe drought in some areas. Climate change is causing temperatures in Indonesia to become hotter and making rainfall patterns erratic (Achyadi et al., 2019; Jaro’ah et al., 2023; Surmaini et al., 2024). Indonesia is an agricultural country that makes the agricultural sector as one of the livelihoods for many people. Still, droughts that occur in several regions in Indonesia result in losses for farmers because the agricultural crops planted have failed harvests, resulting in reduced community income (Duffy et al., 2021; Pratiwi & Suzuki, 2019). One of the areas in NTB experiencing drought is Manggalewa District, Dompu Regency. According to records from the National Disaster Management Agency (BNPB), from 2017 to 2020, 36 drought disasters occurred in NTB Province, 4 of which were drought disasters that occurred in Dompu Regency (BNPB, 2023).

Manggalewa District is one of the sub-districts in Dompu Regency with an area of 176.49 km2. The agricultural sector is the main source of income for most residents in Manggalewa sub-district. The area of rice fields in 2019 reached 3,030 Ha and dry land covered an area of 9,167 Ha (BPS Dompu Regency, 2022). This study used a statistical method, namely the Theory of Run method (Suhardi et al., 2022; Wang et al., 2020a; Wu et al., 2019a). The use of this method is related to another common problem in the field of hydrology: the lack of data, for example, in the analysis of the chances of a flood or drought (Callegary et al., 2018; Ma et al., 2023; Wang et al., 2020b; Wu et al., 2019b; Zhang et al., 2024).

The authors hope that drought analysis research using this method will obtain a measure of the determinant of dry months based on rain data in previous years. Rain data available in the previous year is then generated using the Thomas Fiering method to predict dry months, which can later be used to plan mitigation measures, anticipate prevention, or reduce the impact of drought. To find out the predicted value of rainfall and the worst deficit value based on the Theory of Run method. 

 

METHODS

At the data collection stage, there are primary data as well as secondary data. Primary data is obtained from data from field surveys, which in this study is not used, while secondary data is data obtained from related agencies in the form of location coordinates along with rainfall data for each sectoral rainfall station in Dompu Regency for statistical parameter calculation activities from 2003 to 2022, which are then determined by influential sectoral rain stations using the Thiessen Polygon method.

The stages of data processing and drawing conclusions in drought analysis in the Manggalewa District area using statistical methods, namely the Theory of Run method. Collect monthly rainfall data from 2003 to 2022. Selecting influential rain stations using the Thiessen Polygon method, Monthly rainfall data consistency test, this rain data consistency test was carried out using the Rescaled Adjusted Partial Sums (RAPS) method for the period 2003 to 2022, Calculation of rain discharge data generation using the Thomas Fiering Model for a period of 10 years (2023 to 2032).

 

RESULTS AND DISCUSSION

Selection of Influential Rainfall Stations

To determine the rainfall station that affects the research location, the Thiessen Polygon method can be used to find that the station that affects Manggalewa District, Dompu Regency is the Dompu rainfall station.

 

Figure 1. Thiessen's Polygon to Research Site

Rainfall Data

The data used in this study is semi-monthly rainfall data at each rainfall station that affects the study location. The rainfall station data used is the Dompu rainfall station.

A table with numbers and numbers

Description automatically generated 

 

 

 

 

 

 

 

 

 


Figure 2. Half Month Rainfall Data Dompu Rainfall Station (mm)

Source: Agency, Meteorology, Climatology, and Geophysics (BMKG) Bima Regency 2022

Rainfall Data Consistency Test

The consistency test of rainfall data was carried out using the Rescaled Adjusted Partial Sums (RAPS) method.

Table 1. Dompu Rain Station Monthly Rainfall Data (mm)

Yrs

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Des

2003

247

215

267

73

24

0

0

0

2

20

203

204

1253.11

2004

222

142

196

167

36

0

0

0

0

94

110

85

1051.58

2005

167

193

241

105

0

17

1

0

0

0

30

38

791.90

2006

124

199

163

169

0

0

0

0

0

0

0

178

832.98

2007

342

151

97

27

10

15

0

0

0

8

149

250

1049.03

2008

135

84

95

17

59

0

0

0

0

0

157

280

826.52

2009

159

276

291

113

0

34

13

0

0

44

156

333

1417.60

2010

187

250

247

213

40

5

0

0

0

0

16

156

1114.22

2011

186

156

127

140

69

7

0

0

0

0

17

445

1147.10

2012

281

230

212

92

19

3

0

0

0

70

130

345

1382.30

2013

192

125

79

72

15

0

0

0

0

68

133

137

821.60

2014

273

211

141

0

0

0

0

0

0

0

0

141

766.30

2015

210

215

183

68

53

0

0

0

0

0

0

104

833.36

2016

105

208

57

0

0

1

0

0

0

41

132

615

1156.55

2017

286

297

199

129

60

34

0

0

0

72

239

260

1575.95

2018

289

169

183

255

32

13

2

0

0

0

230

202

1374.75

2019

174

216

151

129

0

0

0

0

0

0

0

229

898.66

2020

275

243

164

186

66

14

0

0

0

50

158

116

1271.21

2021

234

168

195

148

63

86

11

3

37

209

293

292

1738.90

2022

239

206

79

113

0

0

0

0

71

1

132

244

1083.50

Average

1119.36

Source: 2023 Calculation Results

 

Table 2. Dompu Rain Station Consistency Test

Year

2003

1253.11

133.76

894.52

0.89

0.89

2004

1051.58

65.97

217.63

-0.45

0.45

2005

791.90

-261.48

3418.58

-2.18

2.18

2006

832.98

-547.86

15007.41

-1.91

1.91

2007

1049.03

-618.19

19107.69

-0.47

0.47

2008

826.52

-911.02

41497.97

-1.95

1.95

2009

1417.60

-612.78

18774.95

1.99

1.99

2010

1114.22

-617.91

19090.87

-0.03

0.03

2011

1147.10

-590.17

17414.81

0.18

0.18

2012

1382.30

-327.23

5353.82

1.75

1.75

2013

821.60

-624.98

19529.97

-1.98

1.98

2014

766.30

-978.03

47827.59

-2.35

2.35

2015

833.36

-1264.03

79888.21

-1.91

1.91

2016

1156.55

-1226.83

75255.89

0.25

0.25

2017

1575.95

-770.24

29663.64

3.04

3.04

2018

1374.75

-514.85

13253.43

1.70

1.70

2019

898.66

-735.55

27051.40

-1.47

1.47

2020

1271.21

-583.69

17034.63

1.01

1.01

2021

1738.90

35.86

64.28

4.13

4.13

2022

1083.50

0.00

0.00

-0.24

0.24

Sum

 

 

450347.29

 

 

Average

1119.36

 

22517.36

 

 

=

20

=

150.06

=

-2.35

=

4.13

=

4.13

=

6.48

=

0.92 < 1.42 (Consistent)

=

1.45 < 1.60 (Consistent)

Source: 2023 Calculation Results

Data Generation Model Using Thomas Fiering Model

Calculate semi-monthly average rainfall

The equation used is equation (2.7). Example of calculation at the Dompu rainfall station:

Average for January I:

 

Table 3. Average Score of Dompu Rainfall Station (mm)

Moon

Moon

JAN

I

116.40

JUL

I

1.38

II

99.98

II

0.00

FEB

I

110.30

AUG

I

0.14

II

87.39

II

0.00

MAR

I

100.38

SEP

I

0.63

II

67.89

II

4.84

APR

I

71.69

OCT

I

19.17

II

38.97

II

14.62

MAY

I

13.97

NOV

I

60.71

II

13.41

II

53.47

JUN

I

5.91

DES

I

122.66

II

5.49

II

109.96

Source: 2023 Calculation Results

Calculate standard deviation/standard deviation

Standard deviation in January I of 2003:          

 

Table 4. Parameter Analysis of Standard Deviation Value in January I

Year

2003

79.00

-37.40

1399.08

2004

117.50

1.10

1.20

2005

74.50

-41.90

1755.97

2006

71.50

-44.90

2016.39

2007

191.96

75.55

5707.93

2008

78.00

-38.40

1474.89

2009

118.32

1.91

3.65

2010

138.25

21.85

477.24

2011

90.50

-25.90

671.03

2012

193.94

77.54

6011.79

2013

43.00

-73.40

5388.18

2014

177.29

60.89

3707.44

2015

166.52

50.12

2511.83

2016

57.55

-58.85

3463.82

2017

197.51

81.11

6578.08

2018

114.70

-1.70

2.90

2019

73.20

-43.20

1866.61

2020

127.45

11.05

122.01

2021

92.35

-24.05

578.61

2022

125.05

8.65

74.75

Sum

2328.09

 

43813.39

Average

 

 

 

        Source: 2023 Calculation Results

Calculating the correlation coefficient

Table 5. The value of the correlation coefficient of the Dompu Rainfall Station

Moon

Moon

JAN

I

0.39

JUL

I

0.79

II

-0.05

II

0.00

FEB

I

-0.23

AUG

I

0.00

II

-0.15

II

0.00

MAR

I

0.28

SEP

I

0.00

II

0.00

II

0.84

APR

I

0.54

OCT

I

0.36

II

0.65

II

0.80

MAY

I

-0.07

NOV

I

0.58

II

0.35

II

0.56

JUN

I

0.45

DES

I

0.24

II

0.69

II

0.50

 

Generate rain data

Table 6. Rainfall Data Generation Results of Dompu Rainfall Station (mm)

Month

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

January

I

50.97

91.99

117.31

124.79

104.35

62.11

120.76

92.46

66.80

49.77

II

150.24

109.15

133.57

86.26

165.54

150.64

33.93

136.45

81.42

175.09

February

I

67.23

180.31

39.93

46.64

47.57

60.27

106.36

159.05

67.29

98.00

II

38.82

63.81

31.37

100.63

52.59

91.99

75.29

80.01

146.75

27.60

March

I

130.76

188.44

138.34

160.75

61.97

9.80

146.38

118.64

76.94

185.00

II

123.44

50.43

124.25

59.11

16.97

74.50

111.47

142.33

1.33

46.83

April

I

98.08

64.15

21.13

57.04

11.05

70.37

65.31

22.65

37.20

16.03

II

78.56

20.75

38.23

19.97

47.19

37.57

34.53

62.48

5.60

62.15

May

I

1.86

27.29

40.84

34.14

17.81

9.46

11.70

0.27

40.28

29.81

II

0.21

41.20

8.92

23.33

3.39

3.75

5.21

12.94

5.51

38.26

June

I

8.25

3.14

10.02

2.18

4.19

9.23

8.22

9.87

17.53

5.40

II

15.87

3.32

9.14

0.28

9.32

8.23

6.40

16.56

14.01

2.10

July

I

3.14

2.28

0.06

1.22

0.89

0.24

1.64

2.81

3.86

0.67

II

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

August

I

0.85

0.65

0.70

0.16

0.36

1.36

0.53

0.77

0.57

0.29

II

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

September

I

3.48

0.84

3.82

1.17

1.17

2.34

1.72

2.05

0.08

1.22

II

3.57

2.16

12.52

9.25

2.10

7.66

10.44

10.83

2.14

12.93

October

I

64.79

15.21

35.26

15.34

21.96

53.02

29.84

10.56

3.89

8.61

II

16.69

6.19

20.92

1.97

25.43

10.24

28.39

0.46

17.23

14.82

November

I

106.54

35.46

103.22

95.02

20.87

86.29

3.28

47.77

107.38

42.50

II

1.51

41.17

114.27

58.12

73.22

23.82

79.06

96.73

92.91

50.02

December

I

208.28

130.56

189.63

156.94

147.21

108.66

70.65

43.12

77.51

25.65

II

223.00

14.60

125.52

236.53

145.40

162.29

192.04

44.50

120.27

191.64

Source: 2023 Calculation Results

Drought Analysis with the Theory of Run Method

Average monthly rain

Table 7. Monthly Rain Data of Dompu Rainfall Station for the Period 2003-2022 (mm)

Year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Des

2003

247.00

215.00

267.00

73.00

24.00

0.00

0.00

0.00

2.00

20.00

203.00

204.00

2004

222.00

142.00

196.00

167.00

36.00

0.00

0.00

0.00

0.00

94.00

110.00

85.00

2005

167.00

193.00

241.00

105.00

0.00

17.00

1.00

0.00

0.00

0.00

30.00

38.00

2006

124.00

199.00

163.00

169.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

178.00

2007

342.00

151.00

97.00

27.00

10.00

15.00

0.00

0.00

0.00

8.00

149.00

250.00

2008

135.00

84.00

95.00

17.00

59.00

0.00

0.00

0.00

0.00

0.00

157.00

280.00

2009

159.00

276.00

291.00

113.00

0.00

34.00

13.00

0.00

0.00

44.00

156.00

333.00

2010

187.00

250.00

247.00

213.00

40.00

5.00

0.00

0.00

0.00

0.00

16.00

156.00

2011

186.00

156.00

127.00

140.00

69.00

7.00

0.00

0.00

0.00

0.00

17.00

445.00

2012

281.00

230.00

212.00

92.00

19.00

3.00

0.00

0.00

0.00

70.00

130.00

345.00

2013

192.00

125.00

79.00

72.00

15.00

0.00

0.00

0.00

0.00

68.00

133.00

137.00

2014

273.00

211.00

141.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

141.00

2015

210.00

215.00

183.00

68.00

53.00

0.00

0.00

0.00

0.00

0.00

0.00

104.00

2016

105.00

208.00

57.00

0.00

0.00

1.00

0.00

0.00

0.00

41.00

132.00

615.00

2017

286.00

297.00

199.00

129.00

60.00

34.00

0.00

0.00

0.00

72.00

239.00

260.00

2018

289.00

169.00

183.00

255.00

32.00

13.00

2.00

0.00

0.00

0.00

230.00

202.00

2019

174.00

216.00

151.00

129.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

229.00

2020

275.00

243.00

164.00

186.00

66.00

14.00

0.00

0.00

0.00

50.00

158.00

116.00

2021

234.00

168.00

195.00

148.00

63.00

86.00

11.00

3.00

37.00

209.00

293.00

292.00

2022

239.00

206.00

79.00

113.00

0.00

0.00

0.00

0.00

71.00

1.00

132.00

244.00

SUM

4327

3954

3367

2216

546

229

27

3

110

677

2285

4654

AVERAGE

216.35

197.70

168.35

110.80

27.30

11.45

1.35

0.15

5.50

33.85

114.25

232.70

ST. DEV

63.25

51.34

65.95

69.54

26.41

20.58

3.69

0.67

17.49

51.75

90.36

133.56

SKEWNESS

0.06

-0.22

0.03

0.11

0.36

2.83

2.84

4.47

3.38

2.25

0.14

1.27

KURTOSIS

-0.68

0.22

-0.74

-0.35

-1.53

9.17

7.05

20.00

11.46

6.26

-0.91

2.42

 

Table 8. Monthly Rain Data of Dompu Rainfall Station for the Year 2023-2032 (mm)

YEAR

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DES

2023

201.21

106.05

254.21

176.65

2.07

24.13

3.14

0.85

7.05

81.49

108.05

431.29

2024

201.15

244.12

238.87

84.90

68.50

6.46

2.28

0.65

3.00

21.40

76.64

145.16

2025

250.87

71.30

262.59

59.36

49.76

19.16

0.06

0.70

16.34

56.18

217.50

315.15

2026

211.04

147.27

219.86

77.01

57.46

2.45

1.22

0.16

10.42

17.31

153.14

393.48

2027

269.90

100.16

78.94

58.24

21.21

13.51

0.89

0.36

3.27

47.39

94.08

292.61

2028

212.75

152.26

84.30

107.94

13.20

17.46

0.24

1.36

10.00

63.26

110.12

270.94

2029

154.69

181.65

257.85

99.84

16.92

14.61

1.64

0.53

12.16

58.23

82.34

262.69

2030

228.91

239.06

260.97

85.13

13.21

26.43

2.81

0.77

12.88

11.02

144.50

87.61

2031

148.22

214.05

78.27

42.79

45.79

31.54

3.86

0.57

2.22

21.11

200.30

197.77

2032

224.87

125.59

231.84

78.18

68.06

7.50

0.67

0.29

14.16

23.43

92.52

217.28

SUM

2103.6

1581.5

1967.7

870.0

356.2

163.3

16.8

6.2

91.5

400.8

1279.2

2613.9

AVERAGE

210.36

158.15

196.77

87.00

35.62

16.33

1.68

0.62

9.15

40.08

127.92

261.40

ST. DEV

37.82

60.04

81.37

37.08

24.95

9.32

1.29

0.34

5.02

24.14

49.43

105.40

SKEWNESS

-0.33

0.21

-0.93

1.63

0.13

0.12

0.40

0.92

-0.22

0.39

0.91

0.03

KURTOSIS

-0.08

-1.25

-1.28

3.74

-1.81

-0.86

-1.11

1.68

-1.41

-1.31

-0.44

-0.34

 

Surplus/deficit value

1.       January 2003:

               (surplus)

2.       April 2003:

                               (deficit)

 

Table 9. Monthly Rainfall Surplus and Deficit Value of Dompu Rainfall Station for the Period 2003-2022 (mm)

Year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Des

2003

30.65

17.30

98.65

-37.80

-3.30

-11.45

-1.35

-0.15

-3.50

-13.85

88.75

-28.70

2004

5.65

-55.70

27.65

56.20

8.70

-11.45

-1.35

-0.15

-5.50

60.15

-4.25

-147.70

2005

-49.35

-4.70

72.65

-5.80

-27.30

5.55

-0.35

-0.15

-5.50

-33.85

-84.25

-194.70

2006

-92.35

1.30

-5.35

58.20

-27.30

-11.45

-1.35

-0.15

-5.50

-33.85

-114.25

-54.70

2007

125.65

-46.70

-71.35

-83.80

-17.30

3.55

-1.35

-0.15

-5.50

-25.85

34.75

17.30

2008

-81.35

-113.70

-73.35

-93.80

31.70

-11.45

-1.35

-0.15

-5.50

-33.85

42.75

47.30

2009

-57.35

78.30

122.65

2.20

-27.30

22.55

11.65

-0.15

-5.50

10.15

41.75

100.30

2010

-29.35

52.30

78.65

102.20

12.70

-6.45

-1.35

-0.15

-5.50

-33.85

-98.25

-76.70

2011

-30.35

-41.70

-41.35

29.20

41.70

-4.45

-1.35

-0.15

-5.50

-33.85

-97.25

212.30

2012

64.65

32.30

43.65

-18.80

-8.30

-8.45

-1.35

-0.15

-5.50

36.15

15.75

112.30

2013

-24.35

-72.70

-89.35

-38.80

-12.30

-11.45

-1.35

-0.15

-5.50

34.15

18.75

-95.70

2014

56.65

13.30

-27.35

-110.80

-27.30

-11.45

-1.35

-0.15

-5.50

-33.85

-114.25

-91.70

2015

-6.35

17.30

14.65

-42.80

25.70

-11.45

-1.35

-0.15

-5.50

-33.85

-114.25

-128.70

2016

-111.35

10.30

-111.35

-110.80

-27.30

-10.45

-1.35

-0.15

-5.50

7.15

17.75

382.30

2017

69.65

99.30

30.65

18.20

32.70

22.55

-1.35

-0.15

-5.50

38.15

124.75

27.30

2018

72.65

-28.70

14.65

144.20

4.70

1.55

0.65

-0.15

-5.50

-33.85

115.75

-30.70

2019

-42.35

18.30

-17.35

18.20

-27.30

-11.45

-1.35

-0.15

-5.50

-33.85

-114.25

-3.70

2020

58.65

45.30

-4.35

75.20

38.70

2.55

-1.35

-0.15

-5.50

16.15

43.75

-116.70

2021

17.65

-29.70

26.65

37.20

35.70

74.55

9.65

2.85

31.50

175.15

178.75

59.30

2022

22.65

8.30

-89.35

2.20

-27.30

-11.45

-1.35

-0.15

65.50

-32.85

17.75

11.30

Source: 2023 Calculation Results

Figure 2.  Graph of surplus and deficit of Monthly Rain of Dompu Rainfall Station for the Year 2003-2022 (mm)

 

Table 10. Surplus and Monthly Rain Deficit Value of Dompu Rainfall Station for the Year 2023-2032 (mm)

Year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Des

2023

-9.15

-52.10

57.44

89.65

-33.55

7.81

1.46

0.23

-2.10

41.41

-19.87

169.89

2024

-9.21

85.97

42.10

-2.10

32.88

-9.87

0.60

0.03

-6.15

-18.68

-51.28

-116.24

2025

40.51

-86.85

65.82

-27.64

14.14

2.84

-1.62

0.08

7.19

16.10

89.58

53.75

2026

0.68

-10.88

23.09

-9.99

21.84

-13.88

-0.46

-0.46

1.27

-22.77

25.22

132.08

2027

59.54

-57.99

-117.83

-28.76

-14.41

-2.82

-0.79

-0.26

-5.88

7.31

-33.84

31.21

2028

2.39

-5.89

-112.47

20.94

-22.42

1.14

-1.44

0.74

0.85

23.18

-17.80

9.54

2029

-55.67

23.50

61.08

12.84

-18.70

-1.72

-0.04

-0.09

3.01

18.15

-45.58

1.29

2030

18.55

80.91

64.20

-1.87

-22.41

10.11

1.13

0.15

3.73

-29.06

16.58

-173.79

2031

-62.14

55.90

-118.50

-44.21

10.17

15.22

2.18

-0.05

-6.93

-18.97

72.38

-63.63

2032

14.51

-32.56

35.07

-8.82

32.44

-8.83

-1.01

-0.33

5.01

-16.65

-35.40

-44.12

Source: 2023 Calculation Results

 

Figure 3. Graph of surplus and deficit of Monthly Rain of Dompu Rainfall Station for the Year 2023-2032 (mm)

 

CONCLUSION

The research conducted in Manggalewa District, Dompu Regency, utilizing the Theory of Run method and focusing on the Dompu rainfall station reveals several key findings. Firstly, from 2003 to 2022, the district experienced 11 months of drought, spanning from March 2014 to January 2015, resulting in a deficit of 430.05 mm compared to the average normal rainfall. Secondly, during the same period, there were 12 consecutive months of wet weather, lasting from March 2021 to February 2022. Thirdly, projecting forward to the period of 2023 to 2032, the study anticipates 8 months of drought, occurring from February to September 2027. Notably, the most significant deficit is forecasted for December 2030 to January 2031, with a shortfall of 235.93 mm from the average normal rainfall. These findings underscore the importance of understanding and preparing for fluctuations in rainfall patterns in the region for effective water resource management and agricultural planning.

REFERENCES

Achyadi, M. A., Ohgushi, K., & Morita, T. (2019). Impacts of climate change on agriculture for local paddy water requirement irrigation Barito Kuala, South Kalimantan, Indonesia. Journal of Wetlands Environmental Management, 7(2), 140–150.

Callegary, J. B., Megdal, S. B., Villaseñor, E. M. T., Petersen-Perlman, J. D., Sosa, I. M., Monreal, R., Gray, F., & Noriega, F. G. (2018). Findings and lessons learned from the assessment of the Mexico-United States transboundary San Pedro and Santa Cruz aquifers: The utility of social science in applied hydrologic research. Journal of Hydrology: Regional Studies, 20, 60–73.

Duffy, C., Toth, G. G., Hagan, R. P. O., McKeown, P. C., Rahman, S. A., Widyaningsih, Y., Sunderland, T. C. H., & Spillane, C. (2021). Agroforestry contributions to smallholder farmer food security in Indonesia. Agroforestry Systems, 95(6), 1109–1124.

Jaro’ah, S., Ardelia, V., & Jannah, M. (2023). Climate is More Than Just Weather: Gap of Knowledge about Climate Change and Its Psychological Impacts among Indonesian Youth. Indonesian Journal of Social and Environmental Issues (IJSEI), 4(2), 160–170.

Ma, Q., Li, Y., Liu, F., Feng, H., Biswas, A., & Zhang, Q. (2023). SPEI and multi-threshold run theory based drought analysis using multi-source products in China. Journal of Hydrology, 616, 128737.

Pratiwi, A., & Suzuki, A. (2019). Reducing agricultural income vulnerabilities through agroforestry training: evidence from a randomised field experiment in Indonesia. Bulletin of Indonesian Economic Studies, 55(1), 83–116.

Suhardi, S., Putra, W. P. B., Wibowo, A., Ismanto, A., Rofik, Haris, M. I., Safitri, A., Ibrahim, & Summpunn, P. (2022). Canonical discriminant analysis of morphometric variables of swamp buffalo (Bubalus bubalis) in Kalimantan island.

Surmaini, E., Sarvina, Y., Susanti, E., Widiarta, I. N., Misnawati, M., Suciantini, S., Fanggidae, Y. R., Rahmini, R., & Dewi, E. R. (2024). Climate change and the future distribution of Brown Planthopper in Indonesia: A projection study. Journal of the Saudi Society of Agricultural Sciences, 23(2), 130–141.

Wang, L., Zhang, X., Wang, S., Salahou, M. K., & Fang, Y. (2020a). Analysis and application of drought characteristics based on theory of runs and copulas in Yunnan, Southwest China. International Journal of Environmental Research and Public Health, 17(13), 4654.

Wang, L., Zhang, X., Wang, S., Salahou, M. K., & Fang, Y. (2020b). Analysis and application of drought characteristics based on theory of runs and copulas in Yunnan, Southwest China. International Journal of Environmental Research and Public Health, 17(13), 4654.

Wu, R., Zhang, J., Bao, Y., & Guo, E. (2019a). Run theory and Copula-based drought risk analysis for Songnen grassland in northeastern China. Sustainability, 11(21), 6032.

Wu, R., Zhang, J., Bao, Y., & Guo, E. (2019b). Run theory and Copula-based drought risk analysis for Songnen grassland in northeastern China. Sustainability, 11(21), 6032.

Zhang, J., Zhang, M., Yu, Y., & Yu, R. (2024). An innovative method integrating run theory and DBSCAN for complete three-dimensional drought structures. Science of the Total Environment, 926, 171901.

 

 

Copyright holder:

Syakirin, Sayfuddin (2024)

First publication right:

Journal Transnational Universal Studies (JTUS)

This article is licensed under: